Short wavelets and matrix dilation equations
نویسندگان
چکیده
Scaling functions and orthogonal wavelets are created from the coeecients of a lowpass and highpass lter (in a two-band orthogonal lter bank). For \multiilters" those coeecients are matrices. This gives a new block structure for the lter bank, and leads to multiple scaling functions and wavelets. Geronimo, Hardin, and Massopust constructed two scaling functions that have extra properties not previously achieved. The functions 1 and 2 are symmetric (linear phase) and they have short support (two intervals or less), while their translates form an orthogonal family. For any single function , apart from Haar's piecewise constants, those extra properties are known to be impossible. The novelty is to introduce 2 by 2 matrix coeecients while retaining orthogonality. This note derives the properties of 1 and 2 from the matrix dilation equation that they satisfy. Then our main step is to construct associated wavelets: two wavelets for two scaling functions. The properties were derived in 1] from the iterated interpolation that led to 1 and 2. One pair of wavelets was found earlier by direct solution of the orthogonality conditions (using Mathematica). Our construction is in parallel with recent progress by Hardin and Geronimo, to develop the underlying algebra from the matrix coeecients in the dilation equation | in another language, to build the 4 by 4 paraunitary polyphase matrix in the lter bank. The short support opens new possibilities for applications of lters and wavelets near boundaries. Acknowledgements We thank Jee Geronimo and Doug Hardin for sharing their important ideas, and Chris Heil for help in displaying the wavelets. The authors are grateful for the support of the National Science Foundation and of INTEVEP.
منابع مشابه
Construction of a class of trivariate nonseparable compactly supported wavelets with special dilation matrix
We present a method for the construction of compactlysupported $left (begin{array}{lll}1 & 0 & -1\1 & 1 & 0 \1 & 0 & 1\end{array}right )$-wavelets under a mild condition. Wavelets inherit thesymmetry of the corresponding scaling function and satisfies thevanishing moment condition originating in the symbols of the scalingfunction. As an application, an example is provided.
متن کاملAPPLICATION OF HAAR WAVELETS IN SOLVING NONLINEAR FRACTIONAL FREDHOLM INTEGRO-DIFFERENTIAL EQUATIONS
A novel and eective method based on Haar wavelets and Block Pulse Functions(BPFs) is proposed to solve nonlinear Fredholm integro-dierential equations of fractional order.The operational matrix of Haar wavelets via BPFs is derived and together with Haar waveletoperational matrix of fractional integration are used to transform the mentioned equation to asystem of algebraic equations. Our new met...
متن کاملWilson wavelets for solving nonlinear stochastic integral equations
A new computational method based on Wilson wavelets is proposed for solving a class of nonlinear stochastic It^{o}-Volterra integral equations. To do this a new stochastic operational matrix of It^{o} integration for Wilson wavelets is obtained. Block pulse functions (BPFs) and collocation method are used to generate a process to forming this matrix. Using these basis functions and their operat...
متن کاملSymmetry Property and Construction of Wavelets With a General Dilation Matrix
In this note, we are interested in the symmetry property of a refinable function with a general dilation matrix. We investigate the symmetry group of a mask so that its associated refinable function with a general dilation matrix has a certain kind of symmetry. Given two dilation matrices which produce the same lattice, we demonstrate that if a mask has a certain kind of symmetry, then its asso...
متن کاملWavelets with Frame Multiresolution Analysis
A frame multiresolution (FMRA for short) orthogonal wavelet is a single-function orthogonal wavelet such that the associated scaling space V0 admits a normalized tight frame (under translations). In this paper, we prove that for any expansive matrix A with integer entries, there exist A-dilation FMRA orthogonal wavelets. FMRA orthogonal wavelets for some other expansive matrix with non integer ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Signal Processing
دوره 43 شماره
صفحات -
تاریخ انتشار 1995